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SUMMARY

A method is presented for calculating the stresses produced by rec-
tangular cutouts of any size in torsion boxes. The problem is divided
into a "box problem" and a "cover problem." The box problem is a special
case of the general method of analyzing torsion boxes without cutouts.

In the cover problem, simple shear-lag theory is used to obtain "key"
stresses; the final distributions are obtained from these key stresses
by means of simple rules or empirical distribution curves. Comparisons
with the results from three series of tests in which the dimensions of
the cutouts varied over a wide range are shown.

INTRODUCTION

The methods of calculating stresses around cutouts in aircraft shell
structures are of'ten based on rather arbitrary modifications of elemen-
tary theories. These methods have served reasonably well to predict the
tltimate strength of structures made from highly ductile materials but
they are often inadequate when lesgs ductile materials are used and they
are generally inadequate for fatigue calculations.

The general problem of calculating stresses around cutouts must be
broken down into specific ones if reasonably simple solutions are to be
obtained. One specific problem of great practical interest is that of
determining the stresses around a rectangular cutout in the cover of a
torsion box. Reference 1 presents a method of analysis which is very
simple but which breaks down when the cutout becomes large. Reference 2
presents a method of analyzing a box with large cutouts; however, for the
cover adjacent to the cutout, this method gives only chordwise averages
of the shear flow and is thus not sufficiently complete.

In reference 3, the results of reference 2 are used and more detailed
distributions of the stresses around the cutout are obtained by an ana-
lytical and a numericsl method. The calculating procedures involved in
using these methods were considered somewhat lengthy in view of the fact
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that the accuracy achieved was not entirely satisfactory in the critical
region near the cutout; moreover, the methods are rather inflexible in
the sense that the computational labor is not reduced greatly if the
problem posed is to find only the peak stress or the stresses at a few
points.

In this paper, a unified method is presented which is applicable
to cutouts of any size, provided only that coaming stringers are used.
The analysis of the torsion-box action is made on the basis of the same
assumptions as were made in reference 2, but the details of procedure
have been changed in order to integrate the method with that of ana-
lyzing torsion boxes without cutouts as given in reference 4. A more
detailed analysis of the cover containing the cutout is then made by
utilizing an idealized structure and simple shear-lag theory to obtain
"key" stresses. TFinally, the complete distributions are obtained from
the key stresses with the aid of empirical distribution curves or simple
rules. Compared with the methods of reference 3, the present method
requires considerably less labor, is more flexible, and gives better
accuracy.

SYMBOLS

A cross-sectional area of member carrying direct stress (when
used without subscript signifies effective area of corner
flange of an idealized four-flange torsion box of rectan-
gular section), sq in.

ASSG area of coaming stringer in idealized panel at large distance
from cutout, sq in. (see formuls (3))

B Young's modulus, ksi

F force in stringer designated by subscript (if used without
subscript, signifies force 1n coaming stringer at coaming
rib), kips

G shear modulus, ksi

I moment of inertis, in.h

K shear-lag parsmeter, in.~1

T torque, in.-kips

A transverse shear force in one side of net section, kips
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force characterizing bicouple in & four-flange box, kips
length of bay, in.

width of rectangular box, in.

width of net section (one side), in.

half-length of cutout, in.

stress-distribution coefficient

depth of rectanguler box, in.

unit warps associated with calculation of bending stresses due
to torsion, in./kip

shear flow, kips/in.

shear flow in plane panel, kips/in. (fig. 2)

total shear flow on coaming stringer caused by force F, kips/in.
thickness, in.

equivalent thickness of sheet-stringer combination for normal
stress, in.

half-width of cutout, in.

effective width used in conjunction with figure 7 (see
formula (14) and fig. 8(a))

warp caused by torque, in.

spanwise coordinate within a bay measured inwerd from a bulk-
head, in. (see fig. 1)

chordwise coordinate measured from the spanwise center line of
a symmetrical box, in. (see fig. 3(b))

coordinate used in conjunction with figure 7 (equals y if
w < c¢; defined in fig. 8(a) for w >c)

distance from corner flange to neutral axis of net section, in.

spanwise coordinate measured from coaming rib (see fig. 3(b)), in.
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g normal stress, ksi

T shear stress, ksi

Subscripts:

CF corner flange

co cutout region between coaming ribs

COB cutout bay

Cs coaming stringer

CsG coaming stringer in gross section

CSN coaming stringer in net section

F flange (also used to denote front)

FG edge or corner flange in gross section

FN edge or corner flange in net section4

N net section

R rear

b pertains to horizontal wall of rectangular box
c pertains to extended net section

e effective

eq ~ equivelent

h pertains to vertical wall of rectangﬁlar»box
mod . modified

n pertains to nth bay or station

w ‘pertains to wake panel

Superseripts:

F -caused by force in coaming stringer ét coamlng rib

T ‘ caused by torque
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Abbreviations:
N. A. neutral axis
c.sS. coaming stringer

DEFINITION OF PROBLEM AND OUTLINE OF METHOD

The problem treated herein is that of finding the stresses around
a rectangular cutout in a torsion box of the type shown schematically
in figure 1. The figure also indicates the notations used, which are
adopted from references 4 and 5.

The problem is solved to obtailn approximate results in two steps.
The first step is a torsion-box analysis of the type discussed in refer-
ences 4 and 5, in which the elementary shear stresses due to torsion and
the additional stresses that result from the tendency of each bay to
restraln the warping of the adjacent bays are evaluated. In the second
step, the cover is assumed to be detached from the box and is analyzed
in more detail, with the local effects produced by the cutout in the
adjacent full cover being calculated. The two parts of the problem are
referred to as the "box problem" and the "cover problem." TFor small
cutouts, the box effect is often negligible and only the cover problem
needs to be solved. For this reason, and because the method for solving
the box problem is only an extension of a previously published method,
the cover problem is discussed first.

THE COVER PROBLEM

Definition of problem.- Figure 2 shows a stiffened panel repre-
senting the cover detached from the box and loaded by shear flows acting

along the edges. The cover problem is to find the stresses in such a
panel, ‘

In order to obtain sufficient generality, the shear flow is assumed
to have the value qﬁ in the outer panels and the value % in the

inner panel as indicated in figure 2. Each coaming rib is thus loaded
by a shear flow qﬁ on 1ts outer edge and a flow qp on its immer edge.

The difference between qﬁ and Ap is normelly furnished by a load dis-

tributed along the length of the coaming rib; in figure 2, thils load is
shown for convenience as a concentrated force at the top of the rib.

The lower sketch in figure 2 Indicates.the deformation'of the panel
under load. The net section of the panel behaves evidently as a beam
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restrained at the two ends. All references to beam action, bending,
neutral axis, moment of inertia, and so forth in the following discus-
sions refer to the bending of the net section in its own plane as
depicted in figure 2.

The solution of the cover problem is based on the analysis of a
highly simplified skeleton structure. For application to actual struc-
tures, some of the analytical formulas are modified empirically. The
modified formulas yileld key stresses in the actual structure. The com-
plete distribution of the stresses is approximated by utilizing these
key stresses and rules based on elementary theory or empirical
coefficients.

The skeleton structure.- Figure 3(a) shows schematically the actual
panel structure. For the derivation of the formulas, the following
restrictive assumptions are made:

(a) The panel is flat and symmetrical about the longitudinal, as
well as the transverse, center line.

(b) Stringers are of constant cross-sectional area.

(c) Sheet thicknesses are constant in each subpanel (defined by
fig. 3(v)).

(d) The panel is very long, so that the disturbance produced by the
cutout is negligibly small at the ends of the panel.

In addition, the standard assumption of simple shear-lag theory is made
that the panel behaves ag though it contained & system of closely spaced
rigid transverse ribs.

Figure 3(b) shows the skeleton structure used. The cross-sectional
areas of the skeleton stringers are obtained by the following procedures.

For the half net section of the actual structure, compute the moment
of inertia I and the location ¥ of the neutral axis N.A. which is
measured as indicated in figure 3(a). The areas Apgy and Apy are

determined by the condition that the skeleton net section must have the
same moment of inertia and the same neutral axlis as the actual net sec-
tion. These requirements are fulfilled if the areas are calculated from
the formulas

AgsN = =3 (1)

(2)
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For the gross section, the skeleton areas are given by the expressions
* 1
Apg = Apy (+)

The quentity tx 1s the "stringer sheet" thickness of the material

lying between the two coaming stringers in the actual structure (total
cross-sectional area of stringers and effective sheet divided by total
width 2w). The quantity %‘wtx is equivalent to the quantity %-ht
vhich is used in standard plate-girder theory to express the contribu-

. tion of the web of the plate girder to the effective flange area. The
asterisk signifies that the value of the area given by formula (3) is a
limiting value which can be considered as valid only at a large distance
from the cutout. This formula is sufficiently accurate to be used for
calculating the shear-lag parameter K (formila 5); for the calculation
of the stringer stresses, however, it will be replaced later by a more
accurate value which varies along the span.

Figure 3(b) shows the coordinates used. The coordinate & (dis-
tance from coaming rib) is used in the calculation of stresses produced
by the cutout, that is, in the numerical solution of the cover problem.,
The coordinate x 1is the standard one used in the solution of box
problems as indicated in figure 1.

Figure 3(c) shows one-half of the skeleton structure (to the right
of the transverse center line) exploded into free bodies. The analysis
of the net-section part requires only simple statics; the forces V
and F and the shear flow qQy Bare evidently

_ na
Ay = 9 'é% ‘ (c)

The system of forces acting on the gross section, shown on the right
in figure 3(c), may be resolved into two sets. The first set consists of
shears acting on the edges that produce simply a uniform shear flow qﬁ
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in the entire panel. The second set consists of the two couples formed
by the forces F acting on the coaming stringers and the forces F %¥

acting on the edge flanges as shown in figure 3(d). This set is self-
equilibrated and is termed a “planar bicouple." The solution of the
cover problem is thus reduced to the solution of the problem indicated

by figure 3(d).

The internal forces produced in the gross section by the plenar
bicouple can be calculated by simple shear-lag theory. By analogy with
the fundemental shear-lag problems for Infinitely long panels, expres-
sions for these forces may be written down as follows:

-KE

2w _-K&
Fon = F — E
FG 5 © (E)
Then, by statics,
F_2
g, = =@ (F)
F__20—\F
af = -24(q) (c)
where the quantity
—\F -K
(@)F = rre ™ (&)

has been introduced for convenience.

In the equations given, shear flows are considered positive if they
act in the same sense as the shear flow Uy Forces in the flanges and

coaming stringers are considered positive if they act in the direction
of the arrows shown in figure 3(d).

With the aid of these expressions and the principle of least work,
the shear-lag parameter X 1s found to be defined by the expression

elr _1_<gw_)2
E|lAtgq  Ppg'\P

2 2
£ &6

K° (5)
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For ty = te =t this expression simplifies to

2

- 2| oo

The formulas Jjust given represent the theoretical solution for the
skeleton structure. For the analysis of actual structures, some of these
formulas are modified empirically. In order to avoid confusion, the
formulas carrying capital letters A to H are never referred to in actual

analysis; only numbered formulas are used.

Key stresses in actual structure.- The stresses in the skeleton
structure are intended to represent approximations to the most important
or key stresses in the actual structure as follows:

(a) The stresses in the skeleton coaming stringers and edge flanges
represent the stresses In the actual coaming stringers and edge flanges,
respectively.

(b) The shear flow in the "wake panel" (between the coaming
stringers) of the skeleton structure at any given station represents the
chordwilse average of the shear flow In the corresponding location of the
actual structure., The same relation holds for the panel between coaming
stringer and edge flange (net section and extended net section).

Tests have shown that the skeleton stresses interpreted in this
manner glve adequate accuracy, in general, for the net section and for
the gross section in regions awesy from the cutout. The accuracy of the
stresses 1s inadequate, however, for the gross section in the region
close to the cutout. That the stresses may be inaccurate for this sec-
tion was already implied in the discussion of expression (3). The term

% wty 1n this expression is based on the assumption that the chordwise

distribution of the stresses in the cut stringers is linear, as shown

in figure 4 by the solid line. This assumption holds reasonably well at
large distances from the cutout. At moderate distances, however, the
true distribution becomes S-shaped as indicated by the dashed line and,
at very small distances, takes the extreme S-shape indicated by the long
and short dashed line. In the skeleton structure this change in distri-
bution is disregarded, and as & result the stringer stresses, as well as
the shear stresses, are misrepresented to some extent in the vicinity of
the cutout.

The formulas for the key stresses given in this section are based
on the theoretical formulas for the skeleton structure. In order to
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achieve adequate accuracy of stress prediction in the vicinity of the
cutout, however, empirical modifications have been made to some of the
formulas; comparisons with the lettered formulas presented in the pre-
ceding section indicate these modifications.

In these formulas, & positive sign for a normal stress signifies a
tensile stress. The upper signs in formulas (7) and (8) apply when ¥
is positive. For formulas (11) and (12), the signs are determined by
the sign of the stress in the adjacent part of the net section.

Net section,

F = a2 (6)
Sesn = iACFSN(g - ) | (7)
om =535 25 ) ©
Iy = 9 % (9)

Gross section,

Acse = Agsy + %'wtx(l - e'Kg) (w>c) (10=)

_£
ACSG=ACSN+%Vtx<l'ew> (w< c) (10b)

_ F —K§
a =1 e (11)
CcsG A

o, =5 ¢ (12)
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(E)F = FKe'K§(1 - -52E e-Kg) (w> c) (13a)
_E :
@ = mce"K§<1 -Se W> (w<e) (1)
We=c+(w~c)%§ (w>c;§<%) (14a)
W =W (all other cases) (14b)
be = 2(We + C) (15)
O = 2o @F (16)
A -':—WE@F (17)
e
F
q = q}! +q (18)
9 =)+ q (19)

|
The empirical modification terms in formulas (10) and (13) contain
the parameter K when w > c¢ and the parameter 1/w wvhen w < c.
This change in parameters does not Imply a serious discontinuity because

K m=% vhen w = ¢ for reasonably conventional configurations.

Distribution of stresses in actual structure.- The normal stresses
in the net section may be separated into those arising from the bending
moment produced by the transverse force V and those produced by the
edge shear gq,. The solid lines in figure 5(a) show the distribution of

the normal stress due to V as calculated by the elementary theory of
bending; the curve of chordwise distribution is a straight line passing
through the neutral axis. The dashed lines indicate qualitatively
expected deviations from the simple theory caused by local shear lag.




12 NACA TN 3061

Figure 5(b) shows the stringer stresses caused by the edge shears.
The chordwise distribution shown - a straight line beginning at the
neutral axis - is arbitrarily assumed.

Superposition of the two types of stringer stresses for a glven
station results in figure 5(c), which expresses pictorially the rule by
which the stringer stresses in the net section can be estimated from the
key stresses opgy &and Opy-

Figure 5(d) shows the chordwise distribution of the shear stresses
in the net section as expected from quelitative considerations of shear
lag. TIn the central portion (x =~ d), the distribution follows closely
the elementary VQ/Tt formula. Near the root, shear lag may cause &
radical redistribution, with the result that the maximum stress may be
found next to the coaming stringer rather than at the neutral axis.

Tests show that the shear-lag effects vary greatly and that other
effects may cause further changes in the distribution. On the basis of
tests, the distribution shown in figure 5(e) is suggested for purposes
of wltimate-strength-design. If fatigue is a design consideration, some
allowance should be made for the stress pesk shown in figure 5(d) at the
corner of the cutout.

The stringer stresses in the gross section may be estimated from
the key stresses at a given station by use of the straight-line diagram
shown in figure 4. Attempts to refine the distribution for the wske
panel by using S-shaped distribution curves near the cutout are probebly
not worthwhile because the stringers 1n this region are very unlikely to
be critical in design.

For the shear flows, the reverse is true; that 1s, the sghear flows
in the wake panel near the cutout are critical in design. The maximum
value of the shear flow caused by the forces F occurs at the rib sta-
tion; the shear flow always adds numerically to the basic shear flow gé

(for a panel such as the one shown in fig. 3(a)). As a result, it is
also necessary to estimate the chordwise distribution.

Such an estimate may be made with the aid of curves of distribution
coefficients drawn on the basis of test results. Figure 6 shows sche-
matically a family of chordwise curves of the distribution coeffi-
cients f for a half-width cutout plotted in isometric projection in
order to give a picture of the entire distribution. In the wake panel,
the distribution at the rib station follows a parabola. With increasing
distance from the cutout, the curve flattens out and finally becomes an
upside-down parabola. The area under the curve remains constant along
the span; the mean height of the curve is unity. The final shear flow
at any given polnt in the wake panel is obtained by multiplying the
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distribution coefficient f by the shear flow qg, given by formula (16),

which represents the chordwise average between coaming stringers. 1In the
extended net section (panel between a coaming stringer and the adjacent

edge flange), the shear flow qg, given by formula (17), is distributed in

8 similar manner; the chordwise distribution for this panel is taken as
uniform at the rib statlion and changes rather quickly to a half-parabola
(see fig. 6).

The shape of the distribution curves is a function of the dis-
tance £&. If the curves are to be general, this function must be non-
dimensional., Tests indicate that the function may be taken as K& for
vw>c and as Efw for w<ec.

The curves are based on tests of panels that had heavy edge flanges;
whereas, the coaming stringers were of the same size as the regular
stringers. If the coaming stringer is very heavy compared with the other
stringers at the distance K& = 1.5 and beyond, a better approximation
will probebly be obtained by assuming that the distribution in the wake
panel is uniform at K& = 1.5 and that the distribution in the extended
net section is uniform along the span.

Pigure 7 gives curves from which the distribution coefficlents may
be read for the wake panel.

The solid curves correspond to the distribution shown in figure 6;
the dashed curves give the suggested distribution for the case where the
coaming stringers are heavy at K& = 1.5 and beyond. In general, sta-
tions for analysis will be dilctated by considerations of rib locations.
The spanwise curves of distribution coefficients (fig. T7(a)) can then be
used to obtain five coefficients for any given station, which should be
sufficient to construct the chordwise curves of shear flow; if necessary,
guidance in this construction may be obtained by Inspecting the chordwise
curves in figure T(b).

Curves of distribution coefficients for the net-section panel are
not given because the suggested chordwise distributions follow simple
laws except in the region between Kt = 0 and K& = 0.5. The construc-
tion of curves for this region is not believed to be worthwhile because
experimental distribution curves vary so much from case to case that the
uniform distribution shown for K& = O can be rated only as a very rough
approximation, too rough to justify any elaboration.

The distribution curves of figure 7 are directly applicable as
noted only when the cutout is a half-width one (2w = b/2, or w = c).
When the cutout is wider (w > c¢), the central portion of the wake panel
carries almost no shear stress near the end. TFor the sake of simplicity,
complete ineffectiveness 1s assumed for a V-shaped region as indicated
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-

in figure 8(a); the remainder of the half-width of the wake panel is

termed "effective width" and is defined by expression (1lkta). The dis-
tribution curve is applied to the effective width as though it were an
actual width; that is, the coordinate y., 1is measured from the edge of

the V-notch as indicated in figure 8(a).

As the cutout becomes nerrower than half-width, the distribution
may be thought of as resulting from the overlapping of the two halves
of the "basic" curve for the half-width cutout (fig. 8(b)), and the dis-
tribution approaches a uniform one as the cutout becomes very narrow.
The simplest possible approximation for thils range is to modify the
distribution coefficients according to the expression

fpog = 1+ (£ - 1) %? (w< c) (20)

Simplifications of procedure.- Some of the procedures given may be
simplified somewhat in order to reduce computation time.

The largest item in the preliminary work is the computation of the
moment of inertia of the net section. This computation can be eliminated
if the assumption is made that the neutral axis lies halfway between the
coaming stringer and the corner flange. The area of the skeletonized
coaming stringer is then given by the expression

Acsy = Acs + %’tx (21)

The approximation will be too rough if the net section is narrow and the
corner Tlange is much heavier than the coaming stringers.

For very narrow cutouts (say, w< 0.1 X b), the shear-lag param-
eter may be computed by the simplified formula

G
K® = s

- —3— (22)
Evhcsg

and the shear flows in the gross section may be computed by the simpli-
fied expressions

3

< (23)

& ~0 (24)

[¢)
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The distribution factor f should be taken as equal to unity in such
cases.

Comparison of expressions (22) and (5a) shows that the simplified
expression will yield a somewhat lower value of K; the resulting effect
on the peak value of the shear flow ¢, tends to be counteracted by the

omission of the term in parentheses from expression (13b) which results
in expression (23).

The stress in the coaming stringer in the gross sectlion may be
teken as

(o} ¥ e—Kg

0S¢ ™ Tey (25)

unless the coaming stringer is heavilily reinforced in the region of the
net section, as by a doorframe.

For cutouts that are wide (w > c¢) and short (24 < b), it is sug-
gested that the value Uy be used for the entire net section instead

of using the more elsborate distribution obtained by the VQ/I formula
because poor agreement between calculation and tests renders the elabo-
ration useless (see section entitled "Experimental &Evidence').

Comparison with previous method.- Since the simplifications of pro-
cedures given in the preceding section result in a set of formulas which
resembles the set given in reference 1, a comparison of the relative
merits of the two methods may be made.

In the liquidating-force method of reference 1 the stresses in the
panel are consldered as arising from the superposition of two loading
cases (fig. 9). Case A produces simply a uniform shear flow in the
entire panel; case B is solved approximately with the aid of simplifying
assumptions concerning the stresses produced by the reversed or liqui-
dating shear flow -Gp-

The simplifying assumptions are as follows:

() The transverse liquidating shear flows set up forces confined
to the coaming ribs (fig. 10(a)) and balanced by shear flows confined to
the region between these ribs (the net section of the panel).

(b) The longitudinal liquidating forces set up forces confined to

the coaming stringers (fig. 10(b)) and balanced by shear flows in the
region between these stringers.
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The simplifying assumption (b) is supplemented by the rule that
the coaming stringer is assisted by one-half of the strip of skin lying
between it and the adjacent stringer.

The assumption that only the coaming stringer cerries longitudinal
stress is equivalent to assuming that the shear lag in the net section
1s very large. The liquidating-force method thus makes an sutomatic
and conservative allowance for the local stress peak indicated in fig-
ure 5(a), whereas the method of this paper does not.

Another advantage of the liquidating-force method is that calcu-
lation of the cutout effects does not require a knowledge of the struc-
ture away from the cutout. A minimm requirement of the present method
is 'that the width ¢ of the net section be known; if the cross section
of the torsion box is not simple, defining ¢ may be difficult or impos-
sible (for instance, in a multicell torsion tube).

Unfortunately, these potentially important advantages of the
liquidating-force method are offset by an important disadvantage:
nemely, that the method must be regarded as unrellable except in specilal
cases., Critical examination of the data in reference 1 shows that the
rule concerning the effective width of skin assisting the coaming
stringer is very important because the skin contributes a very substan-
tial portion of the total effective area. Consider now the following
hypothetical experiments.

Assume that the actual stringers, except the coaming stringer, are
replaced by a large number of equally spaced small stringers having the
same total area. The actual stress in the coaming stringer would now
be expected to be less than in the original test case because some
stringer material is now close to the coaming stringer, in a location
where it will carry some stress. The calculated stress in thé coaming
stringer, on the other hand, would be much higher because there is now
practically no effective width of skin as defined by the rule given.
Similarly, if the original stringers are combined into a smaller number
of larger stringers, the rule results in a much larger change of stress
than would be expected from physical reasoning and the change is agein
in the opposite direction.

The hypothetical experiments show that any rule that defines the
effective width of skin in terms of the stringer pitch cannot be con-
sidered to have genersl validity. The good agreement between test and
calculation shown in reference 1 can therefore be expected only in the |
followlng special cases:

(a) cases in which the configuration of the cross section is similar
to that of the test specimens of reference 1

(b) cases in which the coaming stringer is so heavy that the effec-
tive width of skin furnishes only an unimportant contribution.
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THE BOX PROBLEM

General method.- The general method used herein for solving the
box problem is-that given in reference 4. For the sake of simplicity,
the discussion in this section 1s confined to boxes having rectangular

doubly symmetrical cross sectlons. Stations and bays of the box are
numbered as in figure 1.

The stresses in bay n are caused by two sets of loads (fig. 11):
namely, a torgne T acting on each end face, and a self-balanced group
of four forces X (a bicouple) acting on the four flanges at each end.
The statically redundant bicouples X are computed for the entire box
by solving a set of equations written with the alid of the recurrence
formula (ref. L)

_ T T
anh-l - (Pn + Pn+l)Xn + qn+i&n+l = Vnt Yna (26)

The quantities p and g express the warp of the cross section of a
given bay at the near and the far end, respectively, caused by a bicouple

of unit magnitude acting at the near end. The quantity wl 1ig the warp
caused by the torque. Further discussion of details such as boundary
conditions may be found in reference k.

After the bicouples X have been computed, the stresses caused in
any given bay by the bicouples acting on the two ends of the bay can be
computed and added to the stresses caused directly by the torque.

Full bay.- For a full bay (without cutout), the procedure of refer-
ence I calls for replacing an actual cross section such as shown in fig-
ure 12(a) by an idealized or skeleton section as shown in figure 12(b).
On the basis of the standard assumption that the normal stresses vary

linearly in the chordwise direction (fig. 12(c)), the area A of the
skeleton flange 1s computed by the formula

A=ACF+-2—btx+-2-hth (27)
where

Acp area of corner flange proper

ty stringer-sheet thickness of cover
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The warps needed for use with equation (26) are given by the expressions

aG 1l /b h

_8 1 b 28

e 3JL\E+8&<tb+th> (28)
aG 1/b h

G ==— —_— — —_—

4 6AE+8a(tb+th> (29)

Te- T (b _ b

WG = 8bh<;b th) (30)

Expressions (28) to (30) give the warps multiplied by the shear modulus G.
These modified warps are more convenient to calculate than the unmodified

values of p, q, and w! because they do not contain the individual
moduli G and E; only the ratio G/E 1s needed.

The shear flows in the walls of bay n are given by the expressions

o p Xp =Xy
" %n " 2a (31)
v  %p - X
i (32)

These shear flows are considered to apply to the idealized, as well as
to the actual, cross section.

The normal stress in the corner flange (idealized or actual) varies
linearly from the value X, 1/A at station n -1 to X,/A at sta-

tion n. The normal stresses in the actual stringers can be deduced
from the flange stresses at any given station by the straight-line rela-
tion indicated in figure 12(c). The signs of these stresses are deter-
mined by inspection with the aid of figure 11 which shows positive
bicouples.

Qualitative considerations of cutout bay.- In reference 2, a method
was presented for solving what is termed here the box problem for a spe-
cial case: namely, a box which consisted of a bay containing a full-length
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cutout and lying between two full bays and which was loaded by torques
at the two ends. The set of tests reported in this reference showed
that the physical assumptions made ylelded a rather satisfactory solu-
tion. The method given herein is therefore based on the same assump-
tions; the presentation is changed, however, in order to obtain & pro-
cedure which makes it possible to treat a cutout bay in the same manner
as a full bay, that is, as part of a long torsion box.

The bay contalning the cutout is skeletonized as indicated in fig-
ure 13(a). When the bay forms part of a torsion box, bending deforma-
tion of the coaming ribs in the plane of the cover is prevented by the
adjacent full cover. For the isolated bay, the coaming ribs are there-
fore assumed stiff agalinst bending; this assumption is indicated picto-
rially in figure 13(a) by showing the ribs as heavy bars. With stiff
coaming ribs, the two parts of the top cover can act as two beams "in
parallel,” built-in at both ends and undergoing bending deflection, as
well as shear deflection, within their plane; the bay can then act in
essentially the same manner as a full bay and can carry torques as well
as bicouples.

Figure 13(b) shows the longitudinal forces that exist at the Jjunc-
ture between an idealized cutout bay and the adjacent full bay. The
coaming rib and the bulkhead, which are common to both bays, are shown
separated from the bays. On the side toward the eutout bay, the rib is
loaded by two couples formed by the forces in the coaming stringers and
those in the corner flanges, respectively. On the side toward the full
bay, the rib is loaded by only one couple formed by the forces in the
corner flanges. The assumption that the coaming rib is stiff thus sepa-
rates the box problem from the cover problem. A remark on this assump-
tion is made in the section entitled "Limitations of Method."

Formulas for cutout bay.- The idealized cross section of a cutout
bay is shown in figure 1. The area Ap 1s obtained in the same manner

as for a full bay by formula (27). The areas Apgy and Apy are calcu-
lated by expressions (1) and (2) with one difference in detail (which is
generally unimportant): namely, that the effective area <% ht,, should

be added to the area of the corner filange proper before the moment of
inertia I of the net section is computed.

Figure 15 shows free-body diagrams of the individual parts of the
cutout bay. Application of the equilibrium equations, ailded by these
diagrams, ylelds the following expressions if the cutout bay is the nth
bay of the box:
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(33)

(34)

(35)

(36)

(37)

(38)

(39)

(+0)

(¥1)

The upper signs in formulas (3%), (35), (39), and (40) apply when y is

positive; a positive force signifies a tensile stress.

The sign of the

stress caused by the force Fp (formula (41)) is determined by inspec-

tion from figure 11.
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Expressions (33) to (41), used in conjunction with the method of
dummy loading (ref. 4), yield the following expressions for warps:

2 2 2
| A 1 oy, 1(p, p .2
oG = + + é_+ 2c> + l6a<tb 2ctN~+ th) (k2)

T, 7 (b . b2 20\ . 1 G Tedb 1 ¢ 1202 - 4e2)
WG = ——|—+ - =)+ = + = 43)
16bh\ty 2cty b,/ 384 E 4.2 384 E bhoPAmy

The expression for gG 1s similar to that for pG, except that the first
(bracket) term is multiplied by -%. The expressions for pG, qG, and

w'¢ reduce to those for a full bay (expressions (28) to (30)) when w =0
and ACSN 1s infinite.

THE COMPLETE PROBLEM

General procedure.- The general procedure for solving the. complete
problem involves the following steps:

(1) Bach bay is skeletonized (formulas (27) and (1) to (3); see
first paragraph of section entitled "Formulas for cutout bay").

(2) The warps are calculated (formulas (28) to (30), (42),
and (4%)).

(3) A system of equations is set up with the aid of the recurrence
formuls (26) and is solved to £ind the bicouples X.

(4) The shear flows due to box action are found by formulas (31)
and (52) for the full bays. The calculation of the associated stringer
stresses is discussed in the paragraph following formula (32).

(5) Shear flows for the cutout bay are found by formulas (33) and
(36) to (38). Key stringer stresses for the cutout bay are found by
formulas (34), (35), (39), and (40).

(6) The total shear flow q from formulas (33) and (38) is distri-

buted according to the scheme of figure 5(e) if desired. Stringer
stresses in the net section are deduced from the key stresses according
to the scheme of figure 5(c).
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(7) The force F is computed by formulas (34%) and (39) as Fpgy
for x=0 and x = a.

(8) The cover problem as defined by figure 3(d) is solved. Key
stresses are cadlculated by formulas (10) to (17). The shear stresses
are distributed with the ald of the coefficients given in figure T7; the
stringer stresses, if needed, are deduced from the key stresses according
to the scheme of figure 4.

(9) The distributed stresses obtained in step (8) are added to the
cover stresses obtained in step (4) for the bays affected by the cutout.

In the procedure just given, the analysis of the net section is part
of the solution of the box problem, not part of the solution of the cover
problem if the latter is visualized in the form shown in figure 2. Con-
comitantly, formulas (6) to (8), (18), and (19) do not appear in the pro-
cedure. The reason for not using the analysis based on figures 2, B(a),
and 3(c) is that these figures define the specialized case in which the
loading is symmetrical about the transverse center line of the cutout.
The procedure given applies to the general case when this symmetry does
not exist. Figure 3(c) could be modified to apply to the general case,
but the procedure used was judged to be somewhat more convenient.

Complications.- In practice, various complications of the problem
are encountered.

The box problem is complicated by deviations of the actual cross
section from the rectangular doubly symmetrical configuration. For cross
sections such as suggested by figure 1, adequate accuracy is obtained if
a rectangular section having the same average depth is substituted. The
procedure is indicated by the numerical exemple given in the appendix.

An important complication may arise from the configuration of the
coaming stringer. The area of this stringer is often increased in the
region of the cutout in order to compensate for the material eliminated
by the cutout; in the full section, the area is tapered off. For such
cases, the following procedure is suggested on the basis of a procedure
developed and verified experimentelly for simple shear-lag problems:

(a) Compute a preliminary value of the shear-lag parameter K by
formulas (5) and (3). Find the area of the coaming stringer proper at
station K& = Q.5 and use it instead of the area of the coaming stringer
in the cutout region to repeat the calculations with formulas (1) to (5).
Use the new value of K for further calculations. A third computation
cycle for K should be made if the variation of area is extreme.

(b) Add to the expression for Aggg in equations (10a) or (10b)
the term -AA signifying the amount by which the area of the coaming
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stringer proper at a given station is decreased below the value at the
rib station (¢ = 0). Use these local values of Aggg for computing

the stresses by formula (11).

Another complication may be that the length 24 of the cutout is
less than the length a of the bay; the formulas given for .cutout bays
are then not sppliceble. This complication usually arises only when the
cutout is not very wide; this fact permits the use of a simple approxi-
mate procedure which is also useful in other cases. This procedure con-
sists in replacing the cover containing a cutout by a cover containing
no cutout and of such thickness that the shear deformations as defined
by the displacements of the four corners are the same for the original
and the replacement cover. In order to find the thickness of this cover,
agsume first that only the cutout region of length 24 between the two
coaming ribs is to be replaced by a so0lid cover. By the application of
elementary formulas to the deformation of the net section (fig. 2), the
thickness of this solid cover is found to be defined by the expression

<g;> b, ()

2ct 6ET
" /oo N

The thickness of a uniform solid cover extending over the entire
length a of the cutout bay (COB) is then defined by the expression

CIRCIENES

where +t, denotes the thickness of the original cover in the region
between coaming rib and end of bay.

Now, let t,, denote the thickness of the cover opposite the cut-
out one. The equivalent average defined by the expression

CRE I

is then used in place of t, in formulas (28) to (30) to compute the
warps.

These formulas may, of course, also be used for a bay with a full-
length cutout in order to avoid the use of the rather cumbersome for-
mulas (42) and (43). Note, however, that expression (i) is approximate
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and becomes of questionable accuracy when the ben@ing term becomes much
larger than the shear term. The accuracy is probably adequate in most
cases for cutouts uyp to half-width.

Limitations of method.- Qualitative theoretical considerations and
a study of the test results (presented subsequently) indicate some limi-
tations of the method.

If the cutout is small (narrow as well as short), the net section
constitutes a short but deep beam which does not follow the elementary
theory of bending very well as a result of shear lag. The effect of
such proportions on the shear in the net section is believed to be taken
care of fairly well by the distribution scheme shown in figure 5(e).

The effect on the stress in the coaming stringer can be taken care of
by a small arbitrary allowance. A definitely conservative estimate of
this stress can be obtained by assuming that the area Apgy 1s equal to

the area of the actual coaming stringer alone.

If the cutout is wide (w > c¢) and short (24 < b), tests show that
the total transverse shear force in the net section is less than calcu-
lated and that the distribution may differ markedly from the calculsted
one. The difference in total shear force is believed to result from the
fact that the corner flange carries more than 1ts share of the shear;
such action has been found in other cases and indicates that a built-up
beam may not follow the elementary theory of bending closely. The inade-
quacy of the theory results in conservative predictions of shear and
stringer stresses in the net section but unconservative predictions for
the corner flanges, which suffer secondary bending.

The assumption that the warping characteristics of a full bay are
not affected by the presence of a cutout in the adjacent bay becomes
questionable when the full bay is short. Tests indicate satisfactory
agreement in cases where the length of the full bay was equal to one-half
the width of the box. Bulkheads are unlikely to be spaced at closer
intervals; ribs may be, but present practice tends toward wider spacing.
If the question appears to be lmportent, one or two steps of a successive-
approximation procedure might be used in which the standard formulas for
the unit warps are corrected for the stress disturbance produced by the
ad jacent cutout.

EXPERIMENTAT. EVIDENCE.

The experimental evidence presented here is obtained from three sets
of tests, two of which have been published previously.
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Test Series I

Test specimens and general discussion.- The first set of tests,
reported originally in reference 1, was made on the box shown in fig-
ure 16. The loading torque was introduced through the two bosses on the
end bulkhead, and the reacting torque was applied in the same manner;
consequently, there was no restraint ageainst warping at the ends of the
box which would introduce undesired stresses. The cover containing the
cutout was riveted to the side walls and the end bulkheads of the box
but not to the intermediate bulkheads 'in an attempt to suppress box
action and thus to produce the conditions of a pure cover problem. In
order to check whether this aim had been achieved, the following calcu-
lations were made.

On the assumption that the cover was riveted to the bulkheads, the
equivalent thickness was computed by expression (46) for all tests. For
the two tests showing the smallest equivalent thickness (and consequently
the largest box effect), the box effect was computed. In the most
extreme case (test 12), the cover shear was changed by about 33 percent.
The measured stresses, however, agreed very closely with the calculations
based on the assumption of no box effect; the conclusion was, therefore,
that the device of not riveting the cover to the intermediate bulkheads
had achieved the aim of reducing box effect to a negligible amount. For
the next case, the box effect was of the same order of magnitude as the
estimated experimental error; for all other cases, it was much less.
Thus, box effect could have been neglected in all but two cases even if
the cover had been riveted to all bulkheads. All calculations shown are
therefore made without accounting for box effect.

The original test schedule is shown in table I. The original test
numbers shovn in this table have been retained in order to avoid confu-
sion, but in the figures, the tests have been rearranged to give a
logical sequence,

The plots for the first 3 tests (three smallest cutouts) have been
omitted here because they are not particularly informative, the stress
disturbance being small. The agreement between test and calculation for
these tests varies from good to fair.

Shear stresses.- The shear stresses for tests 4 to 12 are shown in
figures 17 to 21. For the wake panel (between the coaming stringers), the
agreement between measured and calculated stresses is very satisfactory,
except perhaps for a tendency to underestimate somewhat the stresses
along the line y = O in the longer cutouts (tests 10, 11, and 12).

In the extended net section (portion of gross section lying between
coaming stringer and corner flange), the calculated chordwise distribu-
tion is based on the curves shown in figure 6. Previously mentioned is
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the fact that the uniform distribution assumed for station K& = O can
be rated only as a rough epproximation because the actusl distributions
can vary considerably in this vicinity. For the tests of series I, how-
ever, the agreement is generally rather satisfactory except for test 6
(fig. 18(b)) where the experimental stresses in panel 2 (sheet panel
next to the cosming stringer) are higher than the calculated stresses.
The excess stress in this panel is more or less balanced by deficiencies
in sheet panels 1 and 6. Tt should be noted that the cutout in test 6
is the longest one in the entire series and that the gross section is
not long enough to let the disturbance decay to a negligible value at
the end of the box as is assumed in the theory.

For the net section, the calculated distribution is based on the
diagram shown in figure 5(e). The agreement is rather satisfactory for
this set of tests as long as the width of the cutout is less than one-
third of the width of the box (figs. 17 to 19). For a width equal to
one-half the width of the box or more (figs. 20 and 21), the agreement
varies from poor to very poor. The calculated distribution curves may
differ from the measured ones rather markedly at times. Moreover, all
the measured shear stresses at a given station are lower than the calcu-
lated stresses in many cases. The latter discrepancies can be explained
qualitatively by the assumption that the heavy corner angle carries a
larger part of the shear than application of the VQ/I formula to the
net section would indicate. The existence of such load transfer from
shear web to heavy angle in the vicinity of discontinuities has been
proved in cases where the total shear force was either known (on plate
girders) or could be measured to a rather high degree of accuracy (on
torque boxes in which shear measurements were made around the entire
perimeter). For the tests under consideration herein (figs. 20 and 21),
the stress predictions are highly conservative for the skin. The pres-
ence of a variable shear in the corner angles, however, comnotes second-
ary bending stresses in these angles which msy be very important.

Stringer stresses.- The stringer stresses for tests 4t to 12 are
shown in figures 22 to 26. Inspection of the stresses in the coaming
stringers shows rather good agreement between tests and calculations
except for a region about 2 inches to either side of the coaming rib.

In this region, the experimental curves show either a local peak

(figs. 22 and 23) or a local dip (figs. 24 to 26). A local peak may be
expected as a result of local shear lag and is indicated schematically
in figure 5(a). A local dip may result from two causes. The first is a
difference between nominal and actual geometry. For purposes of calcu-
lgtion, the length of the cutout is measured between the two lines of
rivets connecting the sheet to the comming ribs. The sheet, however,
actually extends about 1 inch inside these lines; the effective area of
the coaming stringer is thus less than the assumed area. The second
cause is the stiffening effect exerted by the coaming rid on the adjacent
sheet. All three effects would be smaller in practice than in these tests
because the coaming stringers would be reinforced.




NACA TN 3061 27

The stresses in the other stringers are estimated fairly well by
the calculstions except for short cutouts, where they are overestimated.
These discrepancies are not felt to be serious for practical design
problems.

Test Series II

Test specimens and general discussion.- The tests of series IT
were made on the box shown in figure 27 and were first reported in ref-
erence 2. Data on test conditions are given in table II. As in the

tests of series I, no restraint against warping existed at the ends of
the box.

The box was originally not built for the cutout tests; for the
original purpose, it was considered adequate to make all but the end
bulkheads "floating" on top of the stringers (see sketch in lower right-
hand corner of fig. 27). For the first four cutout tests, the torque-
transfer bulkheads at the ends of the cutout were made "semifloating"
(directly comnected to top skin). For the last test, these bulkheads
were cgnnected to top and bottom skin (see sketch in upper left-hand
corner ).

A semifloating bulkhead must be regarded as having a finite (and
small) stiffness in shear; the shear stiffness was determined in refer-
ence 2 by special tests (the equivalent thickness, obtained from ref. 2,
is given in table II). The procedure for taking this finite shear stiff-
ness into account is given in reference 5. The calculations on box
effect were taken directly from reference 2 which gave & specialized
method, applicable to the test box, based on the same assumptions as the
method of the present paper.

In two of the tests of series IT, tests 3 and 4, the cutout was
the same; the only difference was that the two bulkheads lying in the
cutout region were removed for test 4. The full-floating intermediate
bulkheads shown in figure 27 were disregarded In all computations because
thelr shear stiffness is very low and because these bulkheads would not
change the stress conditions significantly even if they were very stiff.

Results.- Measured and calculated shear stresses are shown in fig-
ures 28 to 31. 'The station numbere slgnify distances 1n inches from the
center line of the cutout. The results for tests 3 and 4 are shown in
one figure (fig. 30, for the torque used in test 4) because the only
physical change made in the box (removal of the two bulkheads in the
cutout region) does not affect the calculations, and the differences in
measured stresses were negligible.

The agreement between test and calculation is most satisfactory
except for two items. One is the distribution of the stresses in the
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net section in the root region close to the end of the cutout. These
tests are the main ones responsible for the statement made previously
that the uniform distribution for the end zone shown in figure 5(e) can
be rated only as a rough approximation because the true distribution 1is
often more nearly as indicated in figure 5(d). TIn test 1 (fig. 28), a

large discrepancy in the total shear occurs at station 24%, camparable

to the discrepancies found in the net sections of the four tests in
series I with the widest cutouts. On the other hand, the stresses in
the central portions of the net sections agree well with the calcula-
tions for tests 1 and 2 (fig. 29) of series II in spite of the fact that
the cutouts are much wider than those in the tests of series I.

The experimental stresses in tests 3 and 4 (fig. 30) also show
unsatisfactory sgreement with the calculations. The distribution of the

cover shears at stations 32% and 37% shows rather poor agreement, and

the total web shears at stations 22% and 27% show very poor agreement.

Two main reasons are apparent why the theory might be expected to become
unreliable for these tests.

When the net section is narrow, the shear distribution is governed
essentially by the action of the panel formed by the coaming stringer,
the corner flange, and the connecting sheet. A glance at the net sec-
tion in figure 27 shows that a very large disparity exists in size and
shape between the stringer and the corner angle. Moreover, the width of
the panel is very ill defined. The width is about 2 inches if measured
between the rivet line on the coeming stringer and the inner rivet line
on the corner angle. However, since there is some shear deformation
between inner and outer rivet line, the width should be measured to some
undefinable line between these two rivet lines; the resulting uncertainty
is large because the total width is so small.

The second source of error arises from the very low shear stiffness
of the bulkheads. With such a large cutout, each bulkhead is obviously
expected to transfer a large couple from the shear webs to the cover,
and the theory assumes that this transfer is effected by the bulkhead
itself. Because the bulkhead is so flexible, however, the box walls in
its viecinity tend to act as distributed freme ribs which effect a portion
of the transfer. This action takes place in any box hut is quantitatively
negligible with bulkheads of normal shear stiffness.

In test 5 (fig. 31), the agreement is again rather satisfactory for
the cover shears as well as the web shears. This observation suggests
that the main reason for the disagreements in tests 3 and 4 is the use
of very flexible bulkheads on a very large cutout.
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Of some concern are the shear measurements oh the bottom cover in
the cutout bay in the last three tests with a wide cutout. The curves

at stations O, 12%, and 22% show high local peaks near the corner flange.
Similar peaks have sometimes been noted in other tests on torsion boxes
with discontinuities and suggest that some margin of safety should be

provided in such regions.

The agreement between the calculated and experimental stresses in
the coaming stringers and flanges (fig. 32) is rather satisfactory,
particularly in view of the extreme narrowness of the net section in
the last three tests, a condition which brings about an appreciable
uncertainty in the locatlion of the true neutral axis for the built-up
cross section with its large disparity in size between compression
flange and tension flange.

Test Series IIT

Test specimens.- The two tests of series III were made on the box
shown in figure 33. In the first test, the cutout was as shown in the
figure. In the second test, the cutout was widened by one sheet panel
on each side (four stringers cut instead of two). At the root end of
the box, warping was fully restrained because the box was symmetrical
ebout the plane of the root.

Results. - Measured and calculated shear stresses are shown in fig-
ures 34 and 35. Station numbers signify distances from the tip in
inches. The calculations were made under certain simplifying assump-
tions as discussed in the appendix, where the calculations for test 2
are given in some detail as & numerical exasmple. At the stations close
to the end of the cutout, the calculations overestimate the shear stresses
near the center line (y = 0), contrary to the tendency noted in the tests
of series II. These discrepancies are of no practical interest because
the stresses here are at a relative minimum. At the same stations, there
1s not entirely satisfactory agreement in the region between coaming
stringer and flange. Outside of these discrepancies, however, the agree-
ment 1s satisfactory. The experimental plots show dissymmetries which
may be attributed to the fact that the cross section is trapezoidal.

The stresses in the coaming stringers are shown in figures 36
and 37. The agreement is excellent except for the local dips below the
calculated peaks for two of the curves,
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CONCLUDING REMARKS

This paper presents a method for calculating stresses around rec-
tangular cutouts in torsion boxes. Also presented are the results of
three series of tests in which the dimensions of the cutouts vary over
a wide range.

The comparisons between calculated and experimental stresses may be
summed up broadly by stating that the agreement is satisfactory on the
whole with the following exceptions:

(a) When the cutout is narrow and short, the calculation under-
estimates the peak stresses in the coaming stringers because no allow-
ance is made for shear lag.

(b) When the cutout is wide and short, the calculation overestimates
the transverse shear force in the net section, and the distribution also
shows poor agreement. The discrepancies tend to decrease as the length
of the cutout increases and appear to be negligible when this length
exceeds the width of the box.

In case (a), the method is unconservative. However, the stress
disturbance set up by a cutout small in both directions is not severe
and covers only a small area. No undue weight penalty will therefore
be incurred if an arbitrary conservative allowance is made in design.

In case (b), the method gives conservative predictions for the
stresses in the skin. The degree of conservativeness is probably exag-
gerated by the tests because the coaming stringers would be heavier in
practice than they were in the tests. A certain degree of conservative-
ness is felt to be desirable in this case because the region in question
is very likely to be critical in design. Attention is called to the
fact that the differences between tests and calculations imply the
existence of secondary bending in the spar caps; this aspect of the
problem has not been investigated.

Iangley Aeronautical Iaboratory,
National Advisory Committee for Aeronautics,
langley Field, Va., September 25, 1953.
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APPENDIX
NUMERICAL EXAMPLE

As a numerical example, the last test presented in the section
entitled "Experimental Evidence" (test 2 of series III) has been chosen;
this example includes the complication of analyzing a nonrectangular
section. In these calculations the ratio G/E is taken as 0.377. The
torque is 75.5 inch-kips.

Tdealization of full bays for box problem.- The cross section of
the box is shown in figure 33(a). An approximately equivalent rectan-
gular section 9 inches deep is used in the calculations. The approxi-
mation is somewhat rough because the ratio of depth of front spar to
depth of rear spar is rather large, but it is sufficiently accurate for
obtaining the stresses around the cutout, which is the main item of
concern.

Moment of inertia of the front spar . . « « « « « « « « «» « . 42.9 ink
Moment of inertia of the rear spar . . . + ¢« 4 o o =« + « » + 5.10 :Ln.LL

An average moment of inertia is calculated by the expression

. l( 1 > -1
I, 2W2.9 5.10/ 9.10

which gives an equivalent concentrated flange area of

2(9.10)
22t = 0.225 sq in.
81 > 54
for a spar 9 inches deep.
Area of cover skin 33.0(0.040) = 1.320 sq in.
Area of stringers 8(0.090) = 0.720 sq in.

bty = 2.040 sq in.

i

1/6bty, = 0.340 sq in.




32 NACA TN 3061

The area of the corner flange of the idealized rectangular box 9 inches
deep is

A = 0.225 + 0.340 = 0.565 sq in.

The ratlos b/t and h/t, are

b _35.0 _g
t, 0.040 2
t, 2\0.102  0.051

Warps for full bays.- By formulas (28) to (30), the warps for the
full bays are

15(0.377) 1
= + (825 + 117.5) = 11.20
3(0.565) 8(15)

15(0.377) 1l
qG =- + (825 + 117.5) = 6.19
6(0.565) 8(15)

wlg = — =2 (825 - 117.5) = 21.9
8(33.0)9.0

Idealization of cutout bay.- The cutout, which is 16 inches long
(24 = 16.0 inches) and five panels wide (2w = 20.0 inches), is located
centrally in the cutout bay. For the purpose of idealizing the cover of
the cutout bay, the width is measured along the cover between the cen-
troids of the corner angles and is b = 34.02 inches. The width of the

net section is

2c = 34,02 - 20.0 = 14.02 in.

The properties of the two net sections differ somewhat. This difference
is taken into account in the calculation of stresses in the coaming
stringers; for the calculation of shear flows, average values are used.
e e e .. 6.611int

Moment of inertia of front net seetion . . . . .
.. . .. 5.12 in.k

Moment of inertia of rear net sectiom . . . . .
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The average moment of inertias is given by

i_1i/xr . 13\__1
Iy 2\6.61 5.12/ 5.76

By formula (4%),

t ) 1. 02(0.040) 6(5.76) © 0.0119

<1> _ 34,02 L Br.0(3k.02)(0.377) _ 1
®/co

by formuls (45),

1 _ /16.o> 1 /14.0) 1

—_— = + =

% Joeg  0-0L19\30.0/  0.040\30.0/  0.0L77
and by formuls (46),

_1_> il 2 > 1
tp eq 2\0.0177 0.040 0.0246

Therefore,
b 33.0
— = = 1340
t, 0.0246 3
and, as calculated before,
h
_=]_-|_7_5
T

A concentrated corner area of 0.565 square Inches is used as in the
idealized full bay; this approximation is justified for the box problem
by the fact that the material eliminated by the cutout is relatively
inactive in carrying normsl stresses.
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By formulas (28) to (30), the warps for the cutout bay are

_ 30.0(0.377) 1

+ 1340 + 117.5) = 12.75
3(0.565) 8(30.0) (

30.0(0.377) + 1

= - (1340 + 117.5) = 2.73
6(0.565 ) 8(30.0)

wle = P2 (3340 - 117.5) = 37.8
8(33.0)9.0

Shear stresses due to box action.- With the Wafps for all the bays
determined, the recurrence formula (formule (26)) yields the following
set of equations

- 22.40X; + 6.19% = O
6.19%; - 22.40X5 + 6.19%3 = O

6.19%, - 25.95X5 + 2.T3%, = 15.9
2.T3%s - 25.95%, + 6.19%5 = -15.9

6.:L9Xl+ - 22.1;01(5 + 6'19X6 =0

6.19)(5 - 11.20%, -21.9

The solution of these equations is

Xy = -0.051 kips
X, = -0.185 kips
Xz = -0.617 kips
X, = 0.828 Xips
XS = 0.908 kips

Xg = 2.457 kips
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With these X-forces, the stresses due to box action can be computed for
the entire box. 1In this example, detailed calculations are given for
the shear stresses at station 62 (in the net section) and at the spanwise

station l% inches from either end of the cutout. Both of these stations

are in the cutout bay. The shear flow in the bottom cover and in the
gross section of the top cover is, by formulas (33) and (36),

3.5 0.828 + 0.617
2(33.0)9.0 2(30.0)

aQy =

0.1238 - 0.0241 = 0.0997 kips/in.

or

= 0.0997 _
Ty = 505 2.49 ksi

The shear flow due to torque loading in the vertical walls is, by for-
mle (33),

@, = 0.1238 kips/in.

The shear flows in the vertical walls due to the bicouple loading are

2
(qh)F = 0.021;1(2}?) = o.o2h1<%g) = 0.0107 kips/in.

and
" (hF>2 u(l“*) 0428 ki
(qh)R = 0.0241\ =] = 0.024lz—) = 0.0k2 ps/in.

(Tn)., = 0.1238 + 0.0107 _ 1 35 14
F 0.102

0.1238 + 0.0428
R 0.051

The factors (hR/h)2 and (hF/h)2 are obtained from the statics of
a four-flange box of trapezoidal cross section.
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The shear force in the net section is calculated by formulas (33)
and (38) as :

V= cqy= 3.5 o.02h1(22:9> = 2,040 - 0.398 = 1.642 kips
4(9.0) 2

The stresses caused by this force are calculated by the elementary
VQ/It formule and are shown plotted in figure 35 for station 62 which
is 2 inches from the center line of the cutout.

Shear stresses due to planar bicouples F.- The average moment of

inertia of the net section is I = 5.76 inches®. An average value of 7
is 2.12 inches. Other pertinent dimensions are

c = 7.0l in.
w = 10.0 in.
b = 2(10.0 + 7.01) = 34.02 in.

By formulas (1) and (3),

X = 5.76 + 1 10(0 o4O + 0‘090)
“cse 7.0L(7.0L - 2.12) 3 N

0.168 + 0.208 = 0.376 sq in.

By formulas (2) and (4),

By formula (5a),

K2

2
0.377(0. 0k0)| —L_ 4 _L_(20.0 1,1
0.376  0.388\3k.02/ [\7.01 ~ 10.0

0.0130

K = 0,114
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The force F 18 calculated from the shear force V as

_ 1.642(8.0)
7.01

F=YV

ol

= 1.873 kips

For & = 1.12 inches, K¢ = 0.128 and e %6 = 0.880.

By formula (1lka),

Ve = T.0L + (10.0 - 7.01) = 7.68 in.

2(1.12)
10
By formula (15),

be = 2(7.68 + 7.01) = 29.38 in,

By formula (13a),

@) = 1.873(0.11&)(0.880)(1 - 0'280) = 0.1050 kips/in.

or
(?)F = 2.62 ksi

By formulas (16) and (17),

£ 2 2100 5

2 = 1.25 ksi

¥ 29,38 =
2(7.68)

Tg =535 2.62 = -1.37 ksi

These values of T§ and TE are average values. The final shear stress

in the cover is obtained by properly distributing Tg and Tg and adding

the results to the shear stress calculated in the previous section
(2.49 ksi).’
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The shear stress Tg is distributed according to the distribution

charts of figure T(a) which give a distribution coefficient for %E = 0,
e

0.25, O.5Q, 0.75, and 1.00 where Yy, 1is measured from & line which is
W - Wg = 10.00 - T7.68 = 2.32 inches from the center line of the panel
(see fig. 8(a)). Addition of ng and the average shear stress

(2.49 ksi) results in the final shear stresses as shown in the fol-
lowing table:

@ ® ® ® ®
e £ £rF o @ @
Vo W (average ) + :
0 0.03 0.037 2.49 2.527
.25 .28 .350 2.49 2.840
.50 .87 1.085 2.49 3.575
15 1.70 2.120 2.49 4.610
1.00 2.42 3,020 2.hkg 5.510

The above values are plotted in figure 35 for station 50% (g = l% inches)

and station 69 (& = 1 inch). The calculations were made for £ = l% inches.

The shear stresses in the extended net section are obtazined in a
gsimilar manner. The distribution coefficients for this case were obtained
by assuming a uniform distribution at K& = O, a parabolic distribution
at Kt = 0.5, and a linear variation with K¢ 1in the region between
K¢ = 0 and KE = 0.5.

Coaming-stringer stresses.- In calculating the stresses in the
coaming stringers, average values are used for F and K but individual
values are used for calculating the area of the coaming stringer. These
values are

F = 1.873 kips

0.114

=
il



NACA TN 3061 39

For the net section near the front spar,

I=6.61in.*
y = 1.81 in.
¢ = 7.07 in.

(¢ is measured between centrolds of flange and coaming stringer angles. )
By formulas (1) and (10a),

_ 6.61
7.07(7.07 - 1.81)

= 0.178 sq in.

Agsn

1 0. 090 ~0. 11kt
Acgg = 0.178 + 3-(10.0)<é.040 + A )(l -e )
= 0.178 + 0.208(1 - e‘o-lll*ﬁ)

end by formula (11),

1.873e-0.1lh§

0.178 + 0.208(1 - e-o-llhg)

Ocsg =

For three values of ¢ +the evaluation of this formula gives

£ 0.1kt o-0-11kE Zgg’

0 0 1.000 10.50
2 .228 797 6.78
4 456 .635 L.69

The above values of stress are plotted in figure 37(a).
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For the net section near the rear spar,

L

H
I

5.12 in.

= 2.42 in.

<
I

6.95 in.

(¢}
1l

5.12
6.95(6.95 - 2.42)

= 0.163 8q in

Aoy =

0.163 + 0.208(; - e‘o-llhﬁ)

Acsa

e—O. 11ke
-0.11h§)

1.873
0.163 + 0.208(1 -e

Ocg =

¢ “cs?
ksi

0 11.50
2 7.26
4 k.98

These values are plotted in figure 37(b).
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TABLE I
BASIC DATA FOR TEST SPECIMENS OF SERIES I

T
L A T T R
ksi
1 0.0325 2 1.5 135 3.83
2 .0325 2 4.5 135 3.83
3 . 0325 2 1.2 90 2.55
L .0352 7 1.5 135 3.5k
5 . 0352 1k 1.5 108 2.83%
6 . 0352 21 1.5 108 2.8%
T . 0348 T 4.5 117 3.11
8 .0348 T 7.5 117 3.11
9 .0348 7 10.5 90 2.39
10 .0318 13 k.5 90 2.61
1 .0318 13 7.5 63 1.83
12 .0318 13 10.5 5k 1.56
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TABLE II
BASIC DATA FOR TEST SPECIMENS OF SERIES II
t t a W T =L,
B

Test | g3, iy . | i | tnokips | 2PH
1 0.063 0. 00194 24,5 k.6 99.75 1.5%0
2 . 063 . 00194 o .5 19.1 92.70 1.432
3 . 063 . 00194 24,5 2%,6 T71.30 1.100
I . 063 . 00194 24,5 23,6 6h.12 .991.
5 .06% 375 26.0 23,6 64,12 .991
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Figure 2.- Deformation of panel
with cutout.
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(c) Skeleton panel exploded. (d) Final problem.

Filgure 3.- Simplification of cutout panel.
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(a) Normal stress (b) Normal stress (¢) Total normal
due to V. due to -Gp- stress.

(d) Actuasl shear stress. (e) Assumed shear stress.

Figure 5.- Stress distribution in net section.

RRREEN K, =0 (Coaming rib)

Figure 6.- Shear-stress-distribution coefficients for half-width cutout.
(Shown schematically.)
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(a) Spanwise plots.

Figure T.- Shear-stress-distribution coefficients.
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(b) Chordwise plots.

Figure T.- Concluded.
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A

Lol

(a) Wide cutout. (b) Narrow cutout.

Figure 8.- Modification to shear-stress distribution for cutouts which
are not half-width.

b7 _ Yy 77
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A B

Figure 9.- Liquidating-force concept.
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(a) Coeming-rib stress. (b) Coaming-stringer stress.

Figure 10.- Normal stresses in coaming members.
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Figure 11.- Notation for box problems.

(a) Actuasl cross section.
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(b) Idealized cross section.
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(¢) Normal-stress distribution.

Figure 12.- Tdealization of cross section of torsion box.
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e ____/
(a) Cutout bay as individual (b) Exploded view showing

structure. axial forces.

Figure 13.- Cutout bay.

Figure 14.- Idealized cross section Figure 15.- Exploded view of
of cutout bay. cutout bay.



5 bulkheads at 17 in

|0 stiffeners equally
spaced at 3 In

Note: The three internal
bulkheads are not

riveted to cover,
Figure 16.- Test box for series I tests. (A1l materiel 24S-T alumimm
alloy except where noted.)
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Shear stress,
ksi

Figure 17.- Shear stresses around cutout one panel wide. Series I; test k.
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(a) Test 5.
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Series I.

Figure 18.- Shear stresses around cutouts one penel wide.
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Shear stress,
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Distance from center line of cutout, in.
() Test 7. (b) Test 10.
Flgure 19.- Shear stresses around cutouts three panels wide. B8eries I.
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(a) Test 8. (b) Test 11.

Figure 20.- Bhear stresses around cutouts five panels wide. Series I.
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Flgure 21.,- Shear sitresses around cutouts seven panels wide.
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Figure 22.- Stringer stresses around cutout one panel wide. Series I; v
test 4. |
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Figure 23.- Stringer stresses around cutouts one panel wide. Series I.
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Flgure 25.- Stringer stresses eround cutouts flve penels wide. BSeries I.
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Figure 26.- Stringer stresses around cutouts seven panels wide. 8Serles I.
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Figure 27.- Test box for series IT tests. (A1l materisl 248-T aluminum
alloy except where noted.)
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Shear stress, :(

ksi

Figure 28.- Shear stresses.
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Figure 29.- Shear stresses. Series IT; test 2.
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Figure 30.- Shear stresses.

Series II; tests 3 and L.
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Shear stress,
ksi
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Figure 31.- Shear stresses. Series II; test 5.
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Figure 32.- Stringer stresses. Series ITI.
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Figure 34.- Shear stresses.
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FPigure 35.- Shear stresses.

or O

NACA TN 3061

o Experimental

Calculated
o
O o
Station 724 Station 79
Top cover Top cover
0,5 0 o
Station 69
Top cover
i /:
o
00
o
o
. - O o 0o [e2Ns)
000 Station 62 Station 62
Top cover Bottom cover
o
0570 o
°© /station 503 |
Top cover
m
Stafion 475 & o Station 41
Top cover Top cover

Series I1II; test 2.



NACA TN 3061 1

o Experimental
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(@) Coaming stringer near front spar. (b) Coaming stringer near rear spar.

Figure 36.- Coaming stringer stresses. Series III; test 1.
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Figure 37.- Coaming stringer stresses. Series IIT; test 2.
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